TLP521光耦的原边相当于发光二极管。原边电流If越大,光强度越强,副边三极管的电流Ic越大。副边三极管的电流Ic与原边二极管的电流If之比称为光耦合器的电流放大系数,它随温度变化,受温度影响很大。
用于反馈用的光耦正是利用“原边电流变化将导致副边电流变化”来实现反馈,因此,在环境温度变化严重的情况下,由于放大系数的温漂较大,应尽可能不使用光耦来实现反馈。
此外,在使用这种类型的光耦时,必须注意外围参数的设计,使其在相对较宽的线性频带内工作,否则电路对工作参数过于敏感,不利于电路的稳定运行。
通常,选择TL431和TLP521进行反馈。此时,TL431的工作原理相当于内部参考电压为2.5V的电压误差放大器,因此应在其引脚1和引脚3之间连接补偿网络。常见光耦反馈的第一种连接方法如图1所示。
在图中,Vo是输出电压,Vd是芯片的电源电压。com信号连接到芯片的误差放大器输出引脚,或者PWM芯片的内部电压误差放大器(例如UC3525)连接到同相放大器形式,并且com信号连接至其对应的同相端子引脚。注意,左侧的地是输出电压地,右侧的地则是芯片供电电压地。两者通过光耦隔离。
图1所示连接方法的工作原理如下:当输出电压升高时,TL431的第1脚(相当于电压误差放大器的反向输入端)电压升高,第3脚(相当电压误差放大器输出端)电压下降,光耦TLP521的原边电流If增加,光耦另一端的输出电流Ic增加,电阻R4上的电压降增加,com引脚的电压降低,占空比降低,输出电压降低;相反,当输出电压降低时,调整过程类似。
常见的第2种接法,如图2所示。与第1种接法不同的是,该接法中光耦的第4脚直接接到芯片的误差放大器输出端,而芯片内部的电压误差放大器必须接成同相端电位高于反相端电位的形式,利用运放的一种特性——当运放输出电流过大(超过运放电流输出能力)时,运放的输出电压值将下降,输出电流越大,输出电压下降越多。因此,采用这种接法的电路,一定要把PWM芯片的误差放大器的两个输入引脚接到固定电位上,且必须是同向端电位高于反向端电位,使误差放大器初始输出电压为高。
随着If的增大而减小。对于一个电源系统来说,如果环路的增益是变化的,则将可能导致不稳定,所以将静态工作点设置在If过大处(从而输出特性容易饱和),也是不合理的。
热品推荐